

Strengthening the Foundations Workbook

KS4 at Diss High School Chemistry Summer 'catch up'

ANSWERS

Hello!

The answer for each question can be found in the appropriate bricks.

If the answer is too long for the brick then it will appear after the brick walls. There will be a letter or number in the brick to help you find the answer.

Good luck!

Protons = atomic number; Electrons = number of protons Neutrons = (mass number – atomic number)			D			E		С		1
Largest: 7 6.5 x 1 6.54 x Smallest 7		[.] .8 x 10 ² 10 ⁻⁷ 10 ⁻⁸ .7 x 10 ⁻⁹	9	a) 6 x 10 ⁷ b) 1.6 x 10 ⁹		a) 38.743 dm ³ b) 576 cm ³ c) 756.294 dm ³			1 d.p. = 7.3 2 d.p. = 7.25 3 d.p. = 7.254 4 d.p. = 7.2539	
73902000 g = 7.3902 x10 ⁷ g 0.34 g = 3.4 x 10 ⁻¹ g		6 Tł	602 000 000 000 000 000 000 000 This is a very large number		836.0 0.003873 9 740 000 0.003726			7 s.f.		
6.7985 x10 ⁴ 6.52 x 10 ⁻⁵ 5.678 x10 ³			5 x 10 ⁶ 3 x10 ⁴ 2.572 x10 ³		1 s.f. = 80 000 2 s.f. = 80 000 3 s.f. = 79 600 4 s.f. = 79 610			790 36 000 0.00079		

Mass = amount in moles x relative formula mass (molar mass)		Amou concenti	Amount in moles = concentration x volume		Ι		В		В
	2HCl _(aq) + Cu(CuCl _{2 (aq)} + CO ₂	CO _{3 (s)} → _(g) + H ₂ O (I)	н			G			$NH_4NO_3 = 80$ MgSO ₄ = 120 Ca(Al ₂ Si ₂)O ₈ = 276
$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$ $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$		F	Atom = O; no overall charge, smallest part of an element. Molecule = O_2 ; two or more atoms bonded together. Ion = O^{2-} ; charged particle		(NH ₄) ₂ SO ₄ contains two nitrogen, eight hydrogen, one sulfur and four oxygen atoms.				
	$N_{2} + 3H_{2} \rightarrow 2NH_{3}$ $2Mg + O_{2} \rightarrow 2MgO$ $CH_{4} + 4O_{2} \rightarrow 2H_{2}O + CO_{2}$		A	A		$H_2O = 18$ $CH_4 = 16$ $NH_3 = 17$ HCI = 36.5 $H_2SO_4 = 98$			H ₂ SO _{4,} contains two hydrogen, one sulfur and four oxygen atoms.

Α

- Curve drawn through all the crosses on the graph
- As the mean temperature increases the time taken for the reaction to complete reduces. It is a non-linear relationship.
- The higher the temperature the more kinetic energy the particles have; there are more frequent successful collisions

В

- 0.65 mol ÷ 2 dm³ = 0.32 mol/dm³
- 2 mol ÷ 2 dm³ = 1.00 mol/dm³
- 2 mol ÷ 0.75 dm³ = 2.67 mol/dm³
- 100 cm³ ÷ 1000 = 0.1 dm³; 2mol ÷ 0.1 dm³ = 20.00 mol/dm³
- 1500 cm³ ÷ 1000 = 1.5 dm³; 0.5 mol HCl ÷ 1.5 dm³ = 0.33 mol/dm³

С

e.g.

- Chlorine
- Mass number = 35.5
- Atomic number = 17
- 17 protons
- 17 electrons
- Has isotopes

D

Draw a pencil line across the	Pencil, ruler,	Ruler drawn in pencil as it will not
chromatography paper about 1 - 2	chromatography	dissolve in solvent; inks will be
cm from the bottom.	paper	placed on the line
Use a pipette or capillary tube to	Ink, capillary	Capillary tube/ pipette adds a
add small spots of each ink to the	tube/ pipette	small amount of ink to ensure the
line on the paper.		spot is not too big; placed on the
		line so that the distance travelled
		by the spot can be measured
Place the paper into a container	Solvent, beaker	Inks dissolve in solvent and travel
with a suitable solvent in the		up the paper with the solvent; the
bottom.		inks need to dissolve in the
		solvent
Allow the solvent to move through		The total distance travelled by the
the paper, but remove the		solvent needs to be measured to
chromatogram before it reaches		calculate the Rf value.
the top.		
Allow the chromatogram to dry,	Ruler, (paper	Rf value = distance travelled by
then measure the distance	towel)	spot ÷ distance travelled by
travelled by each spot and by the		solvent
solvent.		

Ε

Hydrogen – lighted splint placed into the gas, squeaky pop Oxygen – Glowing splint placed into the gas, relights Carbon dioxide – Gas bubbled through lime water, turns milky Chlorine – Damp litmus paper placed in the gas, bleached/ turns white

F

Diagram made in Chemix

G

н

I

Method should include the following:

- Mention of sulfuric acid and a suitable base e.g. copper oxide
- Measure sulfuric acid and place into a beaker, gently warm using Bunsen burner
- Add base to sulfuric acid until no more dissolves/ solid remains
- Filter the mixture to remove excess base
- Pour filtrate/ copper sulfate solution into an evaporating basin
- Heat until concentrated/ half evaporated
- Pour into a crystallising dish, allow to cool
- Dry crystals using filter paper/ oven/ warm place

Diagram made in <u>Chemix</u>

Method should include the following:

- Mention of a suitable indicator, e.g. phenolphthalein or methyl orange, and the colour change
- Measure 25 cm³ of the unknown and place into conical flask with a few drops of (named) indicator
- Place conical flask on white tile
- Fill burette with known concentration of known solution
- Read the level of solution in the burette (bottom of meniscus)
- Add the solution from the burette to the unknown solution until there is a colour change, swirl flask
- Add solution dropwise near the end point to identify exactly when the colour change of indicator takes place
- Read the level on the burette
- Repeat experiment until concordant results are reached/ until the results are close together